Please wait a minute...
世界竹藤通讯  2018, Vol. 16 Issue (4): 10-14     https://doi.org/10.13640/j.cnki.wbr.2018.04.003
  学术园地 本期目录 | 过刊浏览 | 高级检索 |
样品尺寸对竹材顺纹压缩力学性能的影响研究
石俊利1,2, 黎静1,2, 朱家伟1,2, 王汉坤1,2
1. 国际竹藤中心 北京 100102;
2. 国家林业和草原局/北京市共建竹藤科学与技术重点实验室 北京 100102
Effect of Specimen Size on Compression Properties Parallel to Grain of Bamboo
Shi Junli1,2, Li Jing1,2, Zhu Jiawei1,2, Wang Hankun1,2
1. Department of Biomaterials, International Center for Bamboo and Rattan, Beijing 100102, China;
2. State Forestry Administration and Beijing Co-building Key Laboratory of Bamboo and Rattan Science & Technology, Beijing 100102, China
全文: PDF(4248 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 以毛竹为研究对象,通过对不同尺寸的样品进行顺纹压缩测试,分析样品尺寸对竹材顺纹压缩模量和顺纹抗压强度的影响。结果显示:竹材的顺纹压缩模量与竹壁厚度、样品高度、弧度呈正相关关系,顺纹抗压强度与竹壁厚度、样品高度、弧度呈负相关关系。在弹性变形阶段,样品尺寸的增加会提高维管束的组织比量而增大竹材顺纹压缩模量的计算值,在塑性变形阶段,样品尺寸和弧度会导致提前失稳而降低竹材的顺纹抗压强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石俊利
黎静
朱家伟
王汉坤
关键词 竹材顺纹压缩力学性能尺寸效应弧度    
Abstract:Moso bamboo (Phyllostachys pubescens Mazei ex H. de Lebaie) was used to investigate the effect of specimen size on compression properties parallel to grain of bamboo by testing specimens with different sizes. The results showed that the compression modulus was positively correlated with bamboo culm wall thickness, specimens height and curvature, and the compression strength negatively correlated with culm wall thickness, specimens height and curvature. In the elastic deformation stage, the increase of specimens size would increase the tissue ratio of vascular bundle and increase the calculated value of the compression modulus parallel to grain. In the plastic deformation stage, the curved structure might cause the specimens to be unstable in advance due to the change in curvature during compression, which reduced the compression strength.
Key wordsbamboo    compression parallel to grain    dimensional effect    curvature
     出版日期: 2018-09-03
基金资助:国家科技支撑计划课题(编号:2015BAD04B03)。
通讯作者: 王汉坤,博士,副研究员,研究方向为生物质材料结构与功能。E-mail:wanghankun@icbr.ac.cn。     E-mail: wanghankun@icbr.ac.cn
作者简介: 石俊利,研究方向为生物质材料结构与功能。E-mail:shijl@icbr.ac.cn。
引用本文:   
石俊利, 黎静, 朱家伟, 王汉坤. 样品尺寸对竹材顺纹压缩力学性能的影响研究[J]. 世界竹藤通讯, 2018, 16(4): 10-14.
Shi Junli, Li Jing, Zhu Jiawei, Wang Hankun. Effect of Specimen Size on Compression Properties Parallel to Grain of Bamboo. World Bamboo and Rattan, 2018, 16(4): 10-14.
链接本文:  
http://www.cafwbr.net/CN/10.13640/j.cnki.wbr.2018.04.003      或      http://www.cafwbr.net/CN/Y2018/V16/I4/10
[1] Silva E C N, Walters M C, Paulino G H. Modeling bamboo as a functionally graded material:lessons for the analysis of affordable materials[J]. Journal of Materials Science, 2016, 41(21):6991-7004.
[2] Xu Q, Harries K, Li X, et al. Mechanical properties of structural bamboo following immersion in water[J]. Engineering Structures, 2014(81):230-239.
[3] Huang P, Chang W S, Ansell M P,et al. Density distribution profile for internodes and nodes of phyllostachys edulis(moso bamboo) by computer tomography scanning[J]. Construction & Building Materials, 2015(93):197-204.
[4] 贺瑞林, 周梓雲, 张仲凤. 圆竹家具结构创新设计[J]. 林产工业, 2016, 43(4):52-54.
[5] Lo T Y, Cui H Z, Tang P W C, et al. Strength analysis of bamboo by microscopic investigation of bamboo fibre[J]. Construction & Building Materials, 2008, 22(7):1532-1535.
[6] Ghavami K, Rodrigues C S, Paciornik S. Bamboo:functionally graded composite material[J]. 2003, 4(4):1-10.
[7] Xiao Y, Li L, Yang R, et al. Experimental study on creep and loading property of laminated bamboo bridge[J]. Building Structure, 2013, 43(18):86-91.
[8] Shao Z P, Fang C H, Tian G L. Mode I interlaminar fracture property of moso bamboo (phyllostachys pubescens)[J]. Wood Science & Technology, 2009, 43(5):527-536.
[9] Ray A K, Mondal S, Das S K, et al. Bamboo:a functionally graded composite-correlation between microstructure and mechanical strength[J]. Journal of Materials Science, 2005, 40(19):5249-5253.
[10] Wang X, Ren H, Zhang B, et al. Cell wall structure and formation of maturing fibres of moso bamboo (phyllostachys pubescens) increase buckling resistance[J]. Journal of the Royal Society Interface, 2012, 9(70):988-996.
[11] Shang L, Sun Z, Liu X, et al. A novel method for measuring mechanical properties of vascular bundles in moso bamboo[J]. Journal of Wood Science, 2015, 61(6):562-568.
[12] Huang D S, Zhou A P, Li H T, et al. Experimental study on the tensile properties of bamboo related to its distribution of vascular bundles[J]. Key Engineering Materials, 2012(517):112-117.
[13] Liu H, Wang X, Zhang X, Sun Z, et al. In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy[J]. Holzforschung. 2016, 70(12):1183-1190.
[14] Nogata F, Takahashi H. Intelligent functionally graded material:bamboo[J]. Composites Engineering, 1995, 5(7):743-751.
[15] Amada S, Ichikawa Y, Munekata T, et al. Fiber texture and mechanical graded structure of bamboo[J]. Composites Part B Engineering, 1997, 28(1):13-20.
[16] Habibi M K, Samaei A T, Gheshlaghi B, et al. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure:underlying mechanisms[J]. Acta Biomaterialia, 2015(16):178-186.
[17] Ahmad M, Kamke F A. Analysis of calcutta bamboo for structural composite materials:physical and mechanical properties[J]. Wood Science & Technology, 2005, 39(6):448-459.
[18] Shao Z P, Fang C H, Huang S X. Tensile properties of moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure[J]. Wood Science and Technology, 2010, 44(4):655-666.
[19] Verma C S, Sharma N K, Chariar V M, et al. Comparative study of mechanical properties of bamboo laminae and their laminates with woods and wood based composites[J]. Composites Part B Engineering, 2014, 60(2):523-530.
[20] 强明礼, 任海青, 上官蔚蔚. 不同厚度竹篾胶合板的均布载荷性能[J]. 林产工业, 2016, 43(1):26-28.
[21] Wang H, Li W, Ren D, et al. A two-variable model for predicting the effects of moisture content and density on compressive strength parallel to the grain for moso bamboo[J]. Journal of Wood Science, 2014, 60(5):362-366.
[22] Baets J, Wouters K, Hendrickx K, et al. Compressive properties of natural fibre composites[J]. Materials Letters, 2015(149):138-140.
[23] Chung K F, Yu W K. Mechanical properties of structural bamboo for bamboo scaffoldings[J]. Engineering Structures, 2002, 24(4):429-442.
[24] Lo T Y, Cui H Z, Leung H C. The effect of fiber density on strength capacity of bamboo[J]. Materials Letters, 2004, 58(21):2595-2598.
[25] Li H T, Zhang Q S, Huang D S, et al. Compressive performance of laminated bamboo[J]. Composites Part B Engineering, 2013, 54(1):319-328.
[1] 王发鹏, 朱俊, 金满洁, 汤玉训, 苏连锋, 金赵敏, 毛鹏峰, 黄建颖, 林鹏, 袁华, 庞久寅, 范红伟. 基于玫瑰花瓣褶皱微表面特性仿生构筑疏水竹材的研究[J]. 世界竹藤通讯, 2019, 17(3): 22-25.
[2] 林秋琴, 黄宇翔, 李兴德, 朱安明, 于文吉. 定向重组竹集成材:一种无限接长的新材料[J]. 世界竹藤通讯, 2019, 17(2): 18-21.
[3] 岳晋军, 吴柏林, 林晓越, 胡华斌, 赖竞恺. 浙江龙游县毛竹笋材价格变化规律研究[J]. 世界竹藤通讯, 2019, 17(1): 23-27.
[4] 陆美珍, 杨倩倩, 陈碧芽, 吴建明, 张运山, 桂仁意, 秦勇强, 杨健. 竹材无动力管道运送下山新技术[J]. 世界竹藤通讯, 2018, 16(5): 39-41.
[5] 汪宏, 吕悦孝, 孙枭雄, 多化琼, 马坤, 张成涛. 毛竹力学性能在竹家具中的应用研究[J]. 世界竹藤通讯, 2018, 16(4): 15-17,66.
[6] 何莹, 温旭雯, 王汉坤, 张融, 覃道春. 压力对竹材中防腐剂渗透性影响的初步研究[J]. 世界竹藤通讯, 2018, 16(4): 5-9.
[7] 何星蔚, 傅深渊, 戴月萍, 金春德, 王发鹏. 仿月季花/TiO2超疏水竹材表面特征研究[J]. 世界竹藤通讯, 2017, 15(5): 11-15.
[8] 游茜, 万千, 宋莎莎. 竹装饰材在室内设计中的应用方法研究[J]. 世界竹藤通讯, 2017, 15(3): 14-18.
[9] 谭汝强, 谭宏超, 赵鑫. 毛竹材含水量影响因子研究[J]. 世界竹藤通讯, 2017, 15(3): 23-25,41.
[10] 张芊, 梁广元, 黄梦雪, 张晓春, 张文标. 毛竹筒展平板微观结构和基本性能初步研究张[J]. 世界竹藤通讯, 2016, 14(6): 11-13,18.
[11] 顾志康, 宋绪忠, 谢锦忠, 张玮, 杨倩倩, 杨华, 徐晓云, 冷华南, 吴建明. 伐桩处理对毛竹林生产力影响研究[J]. 世界竹藤通讯, 2016, 14(3): 1-5.
[12] 张文福, 方晶, 刘乐群. 竹材酚醇液化及其应用研究进展[J]. 世界竹藤通讯, 2016, 14(2): 31-36.
[13] 费本华, 马欣欣, 覃道春, 鲁继平. 工业冷却塔制冷新材料——竹材[J]. 世界竹藤通讯, 2016, 14(1): 31-35.
[14] 关传友. 安徽徽州地区的竹文化[J]. 世界竹藤通讯, 2013, 11(6): 36-40.
[15] 余养伦, 于文吉. 高性能竹基纤维复合材料制造技术[J]. 世界竹藤通讯, 2013, 11(3): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed