Please wait a minute...
世界竹藤通讯  2022, Vol. 20 Issue (5): 10-18     https://doi.org/10.12168/sjzttx.2022.05.002
  学术园地 本期目录 | 过刊浏览 | 高级检索 |
基于人工智能技术的竹类主要害虫识别系统在森防场景中的应用
李非非1, 张笑谦2, 徐杰2, 赵波3, 汪海霞4, 陈其兵5
1. 成都星亿年智慧科技有限公司 成都 610095;
2. 电子科技大学 成都 611731;
3. 邛崃市规划和自然资源局 成都 611500;
4. 成都市动物园/成都市野生动物研究所 成都 610081;
5. 四川农业大学 成都 611130
Application of Artificial Intelligence Based Bamboo Pest Recognition System to Forest Pest Control Scenario
Li Feifei1, Zhang Xiaoqian2, Xu Jie2, Zhao Bo3, Wang Haixia4, Chen Qibing5
1. Chengdu Thinlect Intelligent Technology Co., Ltd, Chengdu 610095, China;
2. University of Electronic Science and Technology of China, Chengdu 611731, China;
3. Qionglai Municipal Bureau of Planning and Natural Resources, Chengdu 611500, China;
4. Chengdu Zoo/Chengdu Wildlife Research Institute, Chengdu 610081, China;
5. Sichuan Agricultural University, Chengdu 611130, China
全文: PDF(7561 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 人工智能技术及其应用已成为林草业重点建设领域的重要支撑和业务创新增长点。在四川省竹产业大发展背景下,邛崃市将基于人工智能技术开发的竹类主要害虫识别系统应用于竹产业基地森防场景,实现了对竹产业基地的害虫智能识别,并衍生出害虫发生情况统计分析、管护员巡护管理等智慧化管理手段,促进了当地竹产业基地的精细化管理,探索了竹产业现代化的新途径,为竹产业建设迈入智慧化目标提供了支撑。文中介绍了该系统采用的人工智能技术及相关功能的实际应用,并对相关成果在森防领域开展更广泛的后续应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李非非
张笑谦
徐杰
赵波
汪海霞
陈其兵
关键词 人工智能技术竹类害虫识别系统森防应用四川邛崃    
Abstract:Artificial intelligence technology and its application have become an important backup and a growth point of innovation business for the development of forestry and grass industry. Under the background of the great development of bamboo industry in Sichuan Province, Qionglai City developed a recognition system for main pests of bamboo based on artificial intelligence technology and applied it to the bamboo industry base in the forest pest prevention scenario. The main functions of the system are to intelligently identify pests in bamboo industrial bases, which promotes the adoption of intelligent-based management methods such as statistical analysis of pest occurrence and patrol management by rangers. The application of this system facilitates the organized management of the local bamboo industry base, explores new ways to modernize the bamboo industry, and provides support for the intelligent development of the bamboo industry. This paper introduces the artificial intelligence technology used in the system and its practical application, and prospects the further application of relevant achievements in the field of forest pest control.
Key wordsartificial intelligence technology    bamboo pest    recognition system    application to forest pest control system    Qionglai City, Sichuan Province
     出版日期: 2022-10-29
基金资助:成都市科技项目重点研发支撑计划技术创新研发项目“面向智慧农业的层次多标签约束优化的害虫图像识别关键技术”(2022-YF05-00940-SN);成都市2021年第一批林业产业发展专项资金计划项目(成财建发[2021]51号)。
通讯作者: 陈其兵(1963-),男,教授,博士生导师,研究方向为林学、风景园林学。E-mail:310023939@qq.com。     E-mail: 310023939@qq.com
作者简介: 李非非(1981-),男,高级工程师,硕士,研究方向为林业调查规划设计、林业智能化和现代林业产业发展。E-mail:418223864@qq.com。
引用本文:   
李非非, 张笑谦, 徐杰, 赵波, 汪海霞, 陈其兵. 基于人工智能技术的竹类主要害虫识别系统在森防场景中的应用[J]. 世界竹藤通讯, 2022, 20(5): 10-18.
Li Feifei, Zhang Xiaoqian, Xu Jie, Zhao Bo, Wang Haixia, Chen Qibing. Application of Artificial Intelligence Based Bamboo Pest Recognition System to Forest Pest Control Scenario. World Bamboo and Rattan, 2022, 20(5): 10-18.
链接本文:  
http://www.cafwbr.net/CN/10.12168/sjzttx.2022.05.002      或      http://www.cafwbr.net/CN/Y2022/V20/I5/10
[1] 李见辉, 吴霜寒, 李鸣, 等. 成都平原西缘笋用竹病虫害种类与分布[J]. 四川林业科技, 2019, 40(3): 87-91.
[2] 吴沧松, 唐伟强, 陈贵新. 笋用竹病虫害发生与防治的研究[J]. 竹子研究汇刊, 2000, 19(2): 68-71.
[3] ZHUANG P Q, WANG Y L, QIAO Y. Learning attentive pairwise interaction for fine-grained classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2020: 13130-13137.
[4] BRUNER J S, GOODNOW J J, AUSTIN G A. A study of thinking[M]. London: Routledge, 2017.
[5] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[6] LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the IEEE International Conference on Computer Vision. 2015: 1449-1457.
[7] 李非非, 杨帆, 余飞, 等. 基于人工智能的竹类主要害虫识别系统开发与应用[J]. 世界竹藤通讯, 2021, 19(2): 27-33.
[8] 李禹辰, 李非非, 李见辉, 等. 生态背景下基于人工智能深度学习的竹类害虫识别方法研究[J]. 世界竹藤通讯, 2019, 17(3): 16-21.
[9] 董兆克, 戈峰. 温度升高对昆虫发生发展的影响[J]. 应用昆虫学报,2011,48(5):1141-1148.
[10] 陈瑜, 马春森. 气候变暖对昆虫影响研究进展[J]. 生态学报, 2010, 30(8): 2159-2172.
[1] 李非非, 杨帆, 余飞, 季猛, 舒智慧, 徐杰. 基于人工智能的竹类主要害虫识别系统开发与应用[J]. 世界竹藤通讯, 2021, 19(2): 27-33.
[2] 李禹辰, 李非非, 李见辉, 余飞, 徐杰. 生态背景下基于人工智能深度学习的竹类害虫识别方法研究[J]. 世界竹藤通讯, 2019, 17(3): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed