Please wait a minute...
世界竹藤通讯  2021, Vol. 19 Issue (4): 13-20     https://doi.org/10.12168/sjzttx.2021.04.003
  综合述评 本期目录 | 过刊浏览 | 高级检索 |
竹材催化转化制备乙酰丙酸(酯)研究进展
战雅微, 马腾飞, 刘悦, 李志强
国际竹藤中心 国家林业和草原局竹藤科学与技术重点实验室 北京 100102
Catalytic Conversion of Bamboo for Levulinic Acid (Levulinate) Production: A Review
Zhan Yawei, Ma Tengfei, Liu Yue, Li Zhiqiang
International Centre for Bamboo and Rattan, Key Laboratory of Bamboo and Rattan Science and Technology of National Forestry and Grassland Administration, Beijing 100102, China
全文: PDF(1601 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 中国竹资源丰富,但在实际生产过程中其加工剩余物并未得到充分利用,而乙酰丙酸(酯)作为环境友好且可持续的化学品具有广阔的应用前景,在化工生产过程中利用竹材制备乙酰丙酸(酯)具有很大的潜力。文章回顾了竹材制备乙酰丙酸(酯)的催化转化方法,对近年来竹材催化转化制备乙酰丙酸(酯)的研究进行了综述。从催化转化机理、产物收率、影响因素等角度对Brønsted酸、离子液体、固体酸以及金属盐等4种催化体系的特点进行了分析和对比,概括总结了不同转化方法的优势和不足,并根据现有转化方法中仍存在着的产品高效分离困难、催化剂污染较大以及副产物难以利用等问题,对未来研究方向提出展望,以期为今后的研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
战雅微
马腾飞
刘悦
李志强
关键词 竹材乙酰丙酸乙酰丙酸酯催化转化催化剂    
Abstract:China is rich in bamboo resources, but the residues produced in the bamboo processing have not been fully used. Levulinic acid (levulinate) as an environmentally friendly and sustainable chemical has broad application prospects, so the preparation of levulinic acid (levulinate) from bamboo has great potential in the chemical production process. This paper reviews the catalytic conversion methods of bamboo for levulinic acid (levulinate), as well as the recent studies of the catalytic conversion. The characteristics of four catalytic systems including Brønsted acid, ionic liquid, solid acid and metal salt are analyzed and compared in terms of catalytic conversion mechanism, product yield and influencing factors, to summarize the advantages and disadvantages of each catalytic conversion method. The future research direction is prospected with the view to solve the problems existing in the current conversion methods, such as the difficulty in separating product efficiently, severe pollution of catalyst and the difficulty to utilize by-products, in order to provide references for future research.
Key wordsbamboo    levulinic acid    levulinate    catalytic conversion    catalyst
     出版日期: 2021-09-01
基金资助:国际竹藤中心基本科研业务费项目(1632019017)。
作者简介: 战雅微,研究方向为竹藤生物质液体燃料及化学品。E-mail:lauren1370350460@163.com。
引用本文:   
战雅微, 马腾飞, 刘悦, 李志强. 竹材催化转化制备乙酰丙酸(酯)研究进展[J]. 世界竹藤通讯, 2021, 19(4): 13-20.
Zhan Yawei, Ma Tengfei, Liu Yue, Li Zhiqiang. Catalytic Conversion of Bamboo for Levulinic Acid (Levulinate) Production: A Review. World Bamboo and Rattan, 2021, 19(4): 13-20.
链接本文:  
http://www.cafwbr.net/CN/10.12168/sjzttx.2021.04.003      或      http://www.cafwbr.net/CN/Y2021/V19/I4/13
[1] 江泽慧, 王戈, 费本华, 等. 竹木复合材料的研究及发展[J]. 林业科学研究, 2002, 15(6):712-718.
[2] FENG J F, TONG L, Xu Y Y, et al. Synchronous conversion of lignocellulosic polysaccharides to levulinic acid with synergic bifunctional catalysts in a biphasic cosolvent system[J]. Industrial Crops and Products, 2020, 145:112084.
[3] HE M X, WANG J L, QIN H, et al. Bamboo:A new source of carbohydrate for biorefinery[J]. Carbohydrate Polymers, 2014, 111:645-654.
[4] 杨淑蕙. 植物纤维化学[M]. 北京:中国轻工业出版社, 2001:18-19.
[5] VELAGA B, PARDE R P, SONI J, et al. Synthesized hierarchical mordenite zeolites for the biomass conversion to levulinic acid and the mechanistic insights into humins formation[J]. Microporous and Mesoporous Materials, 2019, 287:18-28.
[6] KANG S M, FU J M, ZHANG G. From lignocellulosic biomass to levulinic acid:A review on acid-catalyzed hydrolysis[J]. Renewable & Sustainable Energy Reviews, 2018, 98:340-362.
[7] 龚晨. 木质生物质浆料制备乙酰丙酸(酯)的研究[D]. 福建厦门:厦门大学, 2019.
[8] FENG J F, JIANG J, XU J M. et al. Preparation of methyl levulinate from fractionation of direct liquefied bamboo biomass[J]. Applied Energy, 2015, 154:520-527.
[9] SWEYGERS N, SOMERS M H, APPLES L. Optimization of hydrothermal conversion of bamboo (Phyllostachys aureosulcata) to levulinic acid via response surface methodology[J]. Journal of Environmental Management, 2018, 219:95-102.
[10] ZHOU C S, YU X J, MA H L, et al. Optimization on the conversion of bamboo shoot shell to levulinic acid with environmentally benign acidic ionic liquid and response surface analysis[J]. Chinese Journal of Chemical Engineering, 2013, 21(5):544-550.
[11] KHAN A S, MAN Z, BUSTAM M A, et al. Efficient conversion of lignocellulosic biomass to levulinic acid using acidic ionic liquids[J]. Carbohydrate Polymers, 2018, 181:208-214.
[12] WANG K, JIANG J G, LANG X Y, et al. Direct conversion of cellulose to levulinic acid over multifunctional sulfonated humins in sulfolane-water solution[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15092-15099.
[13] ZHOU C, YU X, YANG H, et al. The preparation of levulinic acid by acid-catalyzed hydrolysis of bamboo shoot shell in the presence of acidic ionic liquid using the Box-Behnken design[J]. Energy Sources Part A:Recovery Utilization and Environmental Effects, 2010, 35(19):1852-1862.
[14] TAO C N, PENG L C, ZHANG J H, et al. Al-modified heteropolyacid facilitates alkyl levulinate production from cellulose and lignocellulosic biomass:kinetics and mechanism studies[J]. Fuel Processing Technology, 2021, 213:106709
[15] 郑文静. 蔗渣酸法水解制备乙酰丙酸的研究[D]. 广西南宁:广西大学, 2018.
[16] 肖卫华, 吕雪, 侯涛, 等. 机械力催化玉米秸秆醇解合成乙酰丙酸乙酯工艺研究[J]. 农业机械学报, 2017, 48(9):295-302.
[17] 李志强, 江泽慧, 费本华. 竹材制取生物乙醇原料预处理技术研究进展[J]. 化工进展, 2012, 31(3):533-540.
[18] FACHI B A, ABDILA R M, VAN DE BOVENKAMOP H H, et al. Experimental and kinetic modeling studies on the sulfuric acid catalyzed conversion of D-fructose to 5-hydroxymethylfurfural and levulinic acid in water[J]. ACS Sustainable Chemistry & Engineering, 2016, 3(12):3024-3034.
[19] LAPPALAINE K, VOGELER N, KARKKAIN J, et al. Microwave-assisted conversion of novel biomass materials into levulinic acid[J]. Biomass Conversion and Biorefinery, 2018, 8(4):965-70.
[20] 宋道君, 陆小芳, 徐勇军, 等. 响应面法优化硫酸催化甘蔗糖蜜制备乙酰丙酸[J]. 精细化工, 2018, 35(4):612-619.
[21] CHEN H Z, YU B, JIN S Y. Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2-SiO2-Sm2O3[J]. Bioresource Technology, 2011, 102(3):3568-3570.
[22] REN H F, ZHOU Y G, LIU L. Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids[J]. Bioresource Technology, 2013, 129:616-619.
[23] SUN Z, CHENG M X, LI H C, et al. One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis[J]. RSC Advances, 2012, 2(24):9058-9065.
[24] TIONG Y W, YAP C L, GAN S Y, et al. Conversion of biomass and its derivatives to levulinic acid and levulinate esters via ionic liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(14):4749-4766.
[25] 杨佳鑫, 司传领, 刘坤, 等. 木质纤维生物质制备乙酰丙酸及其应用综述[J]. 林业工程学报, 2020, 5(5):21-27.
[26] RUSCH F, WASTOWSKI A D, De LIRA T S, et al. Description of the component properties of species of bamboo:A review[J]. Biomass Conversion and Biorefinery, 2021, DOI:10.1007/s13399-021-01359-3.
[27] 李乃霞. 多级孔道丝光沸石分子筛的合成与表征[D]. 辽宁大连:大连理工大学, 2009.
[28] WANG K, YE J, ZHOU M H, et al. Selective conversion of cellulose to levulinic acid and furfural in sulfolane/water solvent[J]. Cellulose, 201724(3):1383-1394.
[29] 余先纯, 孙德林. 固体酸催化水解杉木制备乙酰丙酸的研究[J]. 中南林业科技大学学报, 2009, 29(5):119-22.
[30] 张宁. 固体酸S2O82-/ZrO2-Al2O3-SiO2水解花生壳制备乙酰丙酸[J]. 化学世界, 2014, 55(3):154-157, 162.
[31] ALONSO D M, GALLO J M R, MELLMER M A, et al. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts[J]. Catalysis Science & Technology, 2013, 3(4):927-931.
[32] LI X Q, LEI T Z, WANG Z W, et al. Catalytic pyrolysis of corn straw with magnetic solid acid catalyst to prepare levulinic acid by response surface methodology[J]. Industrial Crops and Products, 2018116:73-80.
[33] JOSHI S S, ZODGE A D, PANDARE K V, et al. Conversion of cellulose to levulinic acid by hydrothermal treatment using zirconium dioxide as a recyclable solid acid catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(49):18796-18805.
[34] ALONSO D M, GALLO J M R, MELLMER M A, et al. Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts[J]. Catalysis Science & Technology, 2013, 3(4):927-931.
[35] 魏琳珊, 赵家平, 叶俊, 等. 固体磷酸铁催化纤维素液化制备乙酰丙酸及乙酰丙酸甲酯[J]. 林产化学与工业, 2020, 40(5):69-74.
[36] 李博, 常春, 朱伟娜, 等. 固体酸催化纤维素生成乙酰丙酸乙酯的试验研究[J]. 太阳能学报, 2015, 36(7):1768-1772.
[37] 支泽浩. 金属盐催化玉米秸秆制备乙酰丙酸的工艺研究[D]. 天津:天津大学, 2016.
[38] YANG F, FU J, MO J, et al. Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of hexose to levulinic acid[J]. Energy & Fuels, 2013, 27(11):6973-6978.
[39] PENG L C, LIN L, ZHANG J H, et al. Catalytic conversion of cellulose to levulinic acid by metal chlorides[J]. Molecules, 2010, 15(8):5258-5272.
[40] AKIN O, YUKSEL A. Novel hybrid process for the conversion of microcrystalline cellulose to value-added chemicals:part 1:process optimization[J]. Cellulose, 2016, 23(6):3475-3493.
[41] 龚晨, 曹雪娟, 唐兴, 等. 减压蒸馏法从生物质水解液中分离提纯乙酰丙酸[J]. 生物质化学工程, 2020, 54(1):9-15.
[42] 龚晨, 唐兴, 曾宪海, 等. 电渗析法处理生物质水解液分离提纯乙酰丙酸[J]. 厦门大学学报(自然科学版), 2019, 58(6):848-854.
[43] HAYES D J, ROSS J, HAYES M H B, et al. The biofine process:Production of levulinic acid, furfural and formic acid from lignocellulosic feedstocks[M]. New Jersey:John Wiley & Sons, Ltd, 2008.
[1] 任浩, 张双燕, 王传贵, 吴玉涛. 脱木素处理对毛竹材纤维形态和化学成分的影响[J]. 世界竹藤通讯, 2021, 19(4): 34-38,48.
[2] 贾浩, 孙丰波, 费本华. 构建中国竹材仓储体系的战略意义[J]. 世界竹藤通讯, 2021, 19(2): 1-4.
[3] 马欣欣, 陈礼生, 费本华, 鲁继平. 竹格填料与PVC填料在冷却塔中的节能效率与环境影响研究[J]. 世界竹藤通讯, 2021, 19(2): 79-82.
[4] 王发鹏, 袁华, 陈宏鹏, 李仙蕊, 陈虹, 金满洁, 翁伟民, 苏连锋, 庞久寅, 范红伟. 新型氮-磷-硫/单分散二氧化硅复合阻燃剂的阻燃效果[J]. 世界竹藤通讯, 2020, 18(4): 21-24.
[5] 代福宽, 潘怀志, 王传贵. 小径级竹材抗弯性能测试方法[J]. 世界竹藤通讯, 2020, 18(3): 45-49,54.
[6] 马弘帅. 竹材梯度结构对弯曲力学性能的影响[J]. 世界竹藤通讯, 2020, 18(3): 50-54.
[7] 吕衡, 冷利松, 杨阳阳, 沈诗音, 周熠, 黄晓璐, 张健. 浙江安吉县笋竹初级加工行业发展现状和对策[J]. 世界竹藤通讯, 2020, 18(3): 66-68.
[8] 岳祥华, 左奇玉, 张双燕. 油浴热处理对竹材干缩性和力学性能的影响[J]. 世界竹藤通讯, 2020, 18(1): 11-15.
[9] 费本华. 建立国家竹材仓储机制[J]. 世界竹藤通讯, 2019, 17(6): 1-4.
[10] 李春燕, 吕春艳, 于丽丽, 朱礼智, 费本华. 竹材阻燃处理及对其材性的影响[J]. 世界竹藤通讯, 2019, 17(6): 16-20,24.
[11] 汤玉训, 王发鹏, 黄建颖, 袁华, 庞久寅, 林鹏, 毛鹏峰, 苏连锋, 金赵敏, 金满洁, 李霞, 朱俊, 范红伟. 木聚糖改性类荷叶纳米结构超疏水竹材尺寸稳定性研究[J]. 世界竹藤通讯, 2019, 17(5): 27-33.
[12] 费本华, 唐彤. 基于桐油热处理的竹材理化性质研究[J]. 世界竹藤通讯, 2019, 17(5): 73-77.
[13] 费本华. 竹业引领人类生活更美好[J]. 世界竹藤通讯, 2019, 17(4): 1-4.
[14] 王发鹏, 朱俊, 金满洁, 汤玉训, 苏连锋, 金赵敏, 毛鹏峰, 黄建颖, 林鹏, 袁华, 庞久寅, 范红伟. 基于玫瑰花瓣褶皱微表面特性仿生构筑疏水竹材的研究[J]. 世界竹藤通讯, 2019, 17(3): 22-25.
[15] 岳晋军, 吴柏林, 林晓越, 胡华斌, 赖竞恺. 浙江龙游县毛竹笋材价格变化规律研究[J]. 世界竹藤通讯, 2019, 17(1): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed